Space Analyticity for the Navier–Stokes and Related Equations with Initial Data inLp
نویسندگان
چکیده
منابع مشابه
Analyticity for the Navier Stokes and Related Equations with Initial Data
We introduce a method of estimating the space analyticity radius of solutions for the Navier Stokes and related equations in terms of L p and L norms of the initial data. The method enables us to express the space analyticity radius for 3D Navier Stokes equations in terms of the Reynolds number of the flow. Also, for the Kuramoto Sivashinsky equation, we give a partial answer to a conjecture th...
متن کاملthe evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology
abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...
15 صفحه اولModified augmented Lagrangian preconditioners for the incompressible NavierStokes equations
We study different variants of the augmented Lagrangian (AL)-based block-triangular preconditioner introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied to various finite element and Marker-and-Cell discretizations of the Oseen problem in two and thr...
متن کاملAnalyticity estimates for the Navier-Stokes equations
We study spatial analyticity properties of solutions of the Navier-Stokes equation and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier-Stokes equation with data in H, r ≥ 1/2 and prove a stability result for the analyticity radius.
متن کاملOn the Connectedness of the Space of Initial Data for the Einstein Equations
Is the space of initial data for the Einstein vacuum equations connected? As a partial answer to this question, we prove the following result: Let M be the space of asymptotically flat metrics of non-negative scalar curvature on R3 which admit a global foliation outside a point by 2-spheres of positive mean and Gauss curvatures. Then M is connected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1998
ISSN: 0022-1236
DOI: 10.1006/jfan.1997.3167